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Abstract: The effectiveness of the use of history of mathematics in mathematics 
education is worthy of careful research.  In this paper the introduction of the group 
concept to an experimental sample of students aged 16-18 years by an historical 
example drawn from Bombelli’s Algebra (1572) is described.  A second sample of 
students was given a parallel introduction through a Cayley table.  Both groups 
were asked the same test questions and their responses examined and compared. 

1.  Bombelli’s Algebra (1572) and imaginary numbers 

Several authors have shown that the history of mathematics can be drawn on by 
teachers in the presentation of many mathematical topics to the benefit of pupils.  It 
follows that research into the role of history of mathematics in teaching is 
legitimately considered a part of research into mathematics education (many 
references can be mentioned; for example: Jahnke, 1991, 1995 and 1996). 

Of course we must consider the educational use of history of mathematics at 
different levels, and these levels can lead to different educational interventions.  For 
example, according to the conception of the mathematics education as thought 
transference, the main purpose of the educational research is improvement of 
teaching.  The presentation of mathematical topics using historical references is 



 

consistent with this approach.  Of course, the effectiveness of the historical 
introduction will be judged with respect to pupils’ learning. 

In this paper, we consider an important topic of the curriculum of both high 
school (for students aged 16-18 years) and undergraduate mathematics, namely the 
group concept. 

Rafael Bombelli of Bologna (1526-1572) was the author of Algebra, published 
twice, in 1572 and in 1579 (the dispute between G. Cardan and N. Tartaglia about 
the resolution of cubic equations is well known; Scipio Del Ferro was remembered 
in Bombelli’s Algebra: manuscript B.1569, Archiginnasio, Bologna). 

 

Fig. 1  Bombelli’s Algebra (1572-1579) 

In Algebra’s 1 st Book, Bombelli introduced the terms più di meno (pdm) and 
meno di meno (mdm) to represent +i and –i and gave some “basic rules”.  Let us 
consider them in Bombelli’s original words (p. 169):  



 

“Più via più di meno, fa più di meno.        Meno via più di meno, fa meno di meno. 
Più via meno di meno, fa meno di meno.  Meno via meno di meno, fa più di meno. 
Più di meno via più di meno, fa meno.      Più di meno via men di meno, fa più. 
Meno di meno via più di meno, fa più.      Meno di meno via men di meno, fa meno” 

 

Fig. 2  From Bombelli’s Algebra 

Now, let us translate: 

“Più” → +1; “Meno” → –1; “Più di meno” → +i; “Meno di meno” → –i; 
“Via” → ·  (multiplication); “Fa” → =. 

So we can write: 



 

(+1)· (+i) = +i    (–1)· (+i) = –i 
(+1)· (–i) = –i    (–1)· (–i) = +i 
(+i)· (+i) = –1    (+i)· (–i) = +1 
(–i)· (+i) = +1    (–i)· (–i) = –1 

First of all, we underline the importance of the linguistic aspect: for example, we 
have translated the term “Fa” with the symbol “=“; however the modern equality 
symbol can be referred to a relation “in two directions”, while the term “Fa” means 
that the result of the multiplication in the first member is written in the second 
member.  This can be confirmed by further research. 

Moreover, in Algebra we find (p. 70): 

“Più via più fa più.     Meno via meno fa più. 
Più via meno fa meno.   Meno via più fa meno”.  

We can express these in the following way: 

(+1)· (+1) = +1    (–1)· (+1) = –1 
(+1)· (–1) = –1    (–1)· (–1) = +1 

So we can write the following Cayley table: 

x +1 -1 +i -i

-i

+i

-1
+1 +1

-1
-1

+i

+i

+1

-i

-i

-i

-i -1

-1+i

+i

+1

+1  

It can be interpreted as the multiplicative group ({+1; –1; +i; –i}; · ) of the fourth 
roots of unity, a finite Abelian group (it is well known that it is a cyclic group and it 
can be generated either by i either by –i; Bombelli did not notice explicitly this 
property; moreover he did not notice this for its cyclic subgroup generated by –1). 



 

Of course, in Bombelli’s Algebra we cannot find a modern introduction either of 
complex numbers or of the formal notion of a group: Bombelli just indicated some 
mathematical objects in order to solve cubic equations.  These ideas were not 
immediately accepted following the publication of Cardan’s and Bombelli’s works.  
Bombelli himself was initially doubtful and wrote in Algebra, p. 169: “I found 
another kind of cubic root... and I did not consider it real, until I have found its 
proof”; let us under line that Bombelli considered fundamental the geometric proof of 
algebraic statements.  However the formal introduction of i in Bombelli’s Algebra is 
important and modern (Bourbaki, 1960, pp. 91-92).  We notice, according to A. 
Sfard, that complex numbers were introduced simply as an operational concept: 

“ Cardan’s prescriptions for solving equations of the third and fourth order, 
published in 1545, involved [...] even finding roots of what is today called negative 
numbers.  Despite the widespread use of these algorithms, however, mathematicians 
refused to accept their by-products [...]  The symbol [square root of -1 was] initially 
considered nothing more than an abbreviation for certain ‘meaningless’ numerical 
operations.  It came to designate a fully fledged mathematical object only after 
mathematicians got accustomed to these strange but useful kinds of computation” 
(Sfard, 1991, p. 12). 

We can consider the idea of group in a similar way: surely it would be incorrect to 
ascribe to Bombelli an explicit awareness of the group concept, three centuries 
before Galois and Dedekind.  However, we can state that he (implicitly) introduced – 
in action – one of the most important concepts of mathematics. 

2.  Educational problems: the focus of our work 

In an important paper, E. Dubinsky, J. Dautermann, U. Leron and R. Zazkis opened 
“a discussion concerning the nature of the knowledge about abstract algebra, in 
particular group theory, and how an individual may develop an understanding of 
various topics in this domain” (D ubinsky, & al., 1994, p. 267). 

Let us now consider only the group concept (in the article quoted we can find 
interesting considerations of many algebraic notions: the concepts leading up to 



 

“quotient group”, for instance, are: “group”, “subgroup”, “coset”,  “coset product” 
and “normality”: Dubinsky & al., 1994, p. 292).  The authors write: “An individual’s 
knowledge of the concept of group should include an understanding of various 
mathematical properties and constructions independent of particular examples, 
indeed including groups consisting of undefined elements and a binary operation 
satisfying the axioms” (Dubinsky & Al., 1994, p. 268; Leron & Dubinsky, 1995; as 
regards the teaching procedure using the computer software ISETL, presented in 
Dubinsky & Al., 1994, see for example: Dubinsky & Leron, 1994). 

In a recent paper (1996), B. Burn strongly emphasises that the notion of group in 
Dubinsky & al. (1994) is introduced by formal definitions.  In particular, a group is 
“a set with a binary operation satisfyi ng four axioms [...]  They espouse a set-
theoretic viewpoint” (Burn, 1996, p. 375).  Then Burn notes that “a set -theoretic 
analysis is a twentieth-century analysis performed upon the mathematics of earlier 
centuries as well as our own” (Burn, 1996, p. 375) ; so he suggests a pre-axiomatic 
start to group theory (Burn, 1996, p. 375; for example, the author quotes: Jordan & 
Jordan, 1994).  So, according to Burn, the group concept can be introduced before 
offering axioms (he points out the importance of geometric symmetries: Burn, 1996, 
p. 377; Burn, 1985; as regards fundamental concepts of group theory he quotes: 
Freudenthal, 1973). 

In another recent paper (1997), E. Dubinsky & al. assert that “seeing the general 
in particular is one of the most mysterious and difficult learning tasks students have 
to perform” (Dubinsky & al., 1997, p. 252; Mason & Pimm, 1984); the authors 
mention students’ difficulties with permutations and symmetries (Asiala & Al., 
1996; they quote: Breidenbach & Al., 1991; Zazkis & Dubinsky, 1996; as regards 
visualisation: Zazkis & Al., 1996).  So a very important question is the following: is 
it possible (and useful) to introduce the group concept by a pre-axiomatic first 
treatment? 

In this paper we do not claim to give a full answer to this question: rather we 
attempt to contribute to knowledge of the development of students’ understanding of 
the group concept, with reference to historical examples.  For instance, can the 
consideration of the group mentioned above help students in the comprehension of 
the group concept?  In particular, will consideration of Bombelli’s “basic rules” 



 

bring all the properties that are fundamental to the group concept to pupils’ 
awareness? 

As indicated above, we operate on teaching to improve its quality by thought 
transference; but some reactions, especially those in pupils’ minds, are inferred, they 
are plausible rather than certain.  We proposed an example in the historical sphere, 
in order that students will “learn” in this sphere, but so that the knowledge achi eved 
will not be confined to the historical sphere: evolution to different spheres is 
necessary.  A problem that can limit the efficacy of mathematics education as 
(merely) thought transference is as follows: if we operate (only) on teaching, are we 
sure that a correct evolution will take place in the students? 

In what follows we shall examine students’ behaviour in response to a 
comparitive teaching experiment carried out with two samples of high school 
students.  To the first sample, we simply quoted Bombelli’s “basic rules”; in the 
second one we gave the Cayley table.  We wanted to find out if the four properties 
used in the definition of group (according to Burn, they are introduced by the terms: 
“closed”, “associative”, “identity” and “inverse”: Burn, 1 996, p. 372) are acquired 
by students from these introductions. 

3.  The group concept from history to mathematics education 

The sample comprised the students of three classes from the 3rd Liceo Scientifico 
(pupils aged 16-17 years), 68 pupils, and of three classes from the 4th Liceo 
scientifico (pupils aged 17-18 years), 71 pupils (total: 139 pupils), in Treviso (Italy).  
At the time of the experiment, pupils knew the definition of i (i2 = –1); they did not 
know the group concept. 

We divided (at random) every class into two parts, referred to as A and B; then we 
gave the following cards to the students.  In the card given to the students in part A 
(total 68 students) we just quoted Bombelli’s “basic rules”; in the card given to the 
students of the part B (total 71 students), we did not quote Bombelli’s “basic rules” 
but we gave Cayley table.  (See Cards A and B illustrated below.)  By the test 
questions, we wanted to find out if consideration of a simple historical example 



 

(without an axiomatic set-theoretic viewpoint) is useful in introducing the group 
concept; moreover, we wanted to find out the difference between the results obtained 
by students who were given a group description by Bombelli’s “basic rules” and the 
results obtained by students who had received the Cayley table. 

As regards the four properties used in the definition of a group, we expected that 
closure, associativity and the presence of the unit in the set G = {+1; –1; +i; –i} 
would be apparent to many pupils.  Closure appears clearly both in Bombelli’s rules 
and in the Cayley table; the other properties are familiar.  The inverse property 
namely that, for every x∈G, there is x’∈G such that x· x’  = x’ · x = 1 can be harder 
to discern. 

Card A. In Algebra, Rafael Bombelli of Bologna (1526-1572) gave the rules: 

+1)· (+1) = +1 (–1)· (+1) = –1 (+1)· (–1) = –1 (–1)· (–1) = +1 
(+1)· (+i) = +i (–1)· (+i) = –i (+1)· (–i) = –i (–1)· (–i) = +i 
(+i)· (+i) = –1 (+i)· (–i) = +1 (–i)· (+i) = +1 (–i)· (–i) = –1 

(we have written the rules by modern symbols). 

Consider the set G = {+1; –1; +i; –i}. Are the following statements true or false? 

(1) The product of two elements of G is always an element of G. 
(2) The multiplication of elements of G is associative. 
(3) There is an element e∈G such that, for every x∈G, e· x = x· e = x. 
(4) For every x∈G, there is an element x’∈G such that x· x’  = x’ · x = e. 

 

Card B. Let us consider the following table: 
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Consider the set G = {+1; –1; +i; –i}. Are the following statements true or false? 

(1) The product of two elements of G is always an element of G. 
(2) The multiplication of elements of G is associative. 
(3) There is an element e∈G such that, for every x∈G, e· x = x· e = x. 
(4) For every x∈G, there is an element x’∈G such that x· x’  = x’ · x = e. 

The time allowed to read the card and answer the questions was10 minutes.  (We 
wanted students to examine the problem ‘at a glance’).  The students answers were 
as follows for the two samples. 

Card A   true   false   no answers 
  (1)  59 87%    2   3%    7 10% 
  (2)  65 96%    1   1%    2   3% 
  (3)  48 71%    3   4%  17 25% 
  (4)  27 40%  21 31%  20 29% 

Card B   true   false   no answers 
  (1)  69 97%    2   3%    0   0% 
  (2)  70 99%    0   0%    1   1% 
  (3)  69 97%    0   0%    2   3% 
  (4)  41 58%    8 11%  22 31% 

These results indicate that properties 1, 2, 3 (closure, associativity, presence of the 
unit element) are recognised by students.  As regards properties 1 and 2 the 
differences between sample A and sample B are fairly small, with a greater 
difference for property 3: it seems that the Cayley table was somewhat more helpful 
to pupils than Bombelli’s rules.  As regards property 4 (the presence of inverses) the 
situation is rather different: only 40% of the students (sample A) and 58% (sample 
B) accepted the property. Let us represent some of the results in the following 
picture (it is just a qualitative representation: the differences between percentages in 
test A and in test B are sometimes slight): 
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Tab. I 

We interviewed individually those pupils (A: 41 students; B: 30 students) who did 
not consider statement 4 to be “true”.  Almost all these students simply stated that 
they did not realize the presence of the inverses just by examining Bombelli’s rules 
(or the Cayley table).  So consideration of the historical example was successful in 
causing all the conjectured reactions and expected effects for only some of the 
students (let us notice that it is well known that a multiplicative finite submonoid G 
of the multiplicative group C* of non-zero complex numbers is a subgroup: the 
sufficiency of the closure test, in this case, is underlined also in: Burn, 1996, p. 373; 
so, as regards the previous tests, it is inconsistent to state that properties 1, 2, 3 are 
true and property 4 is not true; however, high school pupils cannot know the 
mentioned proposition: Dubinsky & Al., 1997, p. 251). 

4.  History of mathematics and epistemology of learning 

The consideration of relevant examples from the history of mathematics can really 
help the introduction of important topics.  As regards the group concept, however, 
the supposed reactions took place completely only for some students. 

A pre-axiomatic start to group theory can be useful (see for example: Jordan & 
Jordan, 1994), but it is not always enough to assure full learning.  As indicated 
above, the question remains open. It is possible to object that the mere offereing of 



 

Bombelli’s rules is insufficient to achieve a complete learning of the group concept.  
Let us emphasise that our research was an exploratory study.  For a fuller 
investigation it would be necessary to identify clearly sampling criteria and pre-
course intuitions (as underlined in: Burn, 1996, p. 371). 

Let us quote once again Dubinsky & al. (1997): “A historical view is useful in 
designing research and instruction with respect to group theory.  History is 
certainly a part of our methodology, but we are influenced not only by the record of 
who proved what and when, but also with the mechanisms by which mathematical 
progress was made” (Dubinsky & a l., 1997, p. 252; according to Piaget & Garcia, 
1983, there is a close connection between historical and individual development at 
the level of cognitive mechanism; see: Dubinsky & Al., 1997, p. 252). 

The main limititation of the notion of mathematics education as thought 
transference lies in the uncertainty about real effects (upon the learning) of teachers’ 
choices.  We make no claims for the teaching of abstract algebra – through the 
consideration of historical references or otherwise – as regards the nature and the 
meaning of mathematical objects. Here several problems are opened (Godino & 
Batanero, 1998), involving several fundamental philosophical questions.  However it 
is important and necessary to control the educational research process by 
experimental verification: this can profoundly affect the delineation of the research 
and give it an important, particular epistemological status. 
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