

It is very important «to frame our ideas and our conceptions of the world in an historical perspective», in Paul Karl Feyerabend's words.

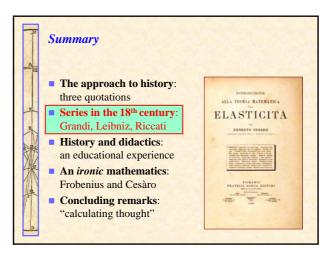
 He underlines moreover:
 «this task is not simple, because our vision of the hi

because **our vision of the history is influenced by some models that hypnotize us**» (from *Lezioni Trentine*, Lectures in Trento, p. 17).

Three quotations: Gadamer

According to Hans-Georg Gadamer, «to think historically actually means to carry out completely the transposition that concepts of the past go through when we try to think on the basis of them.

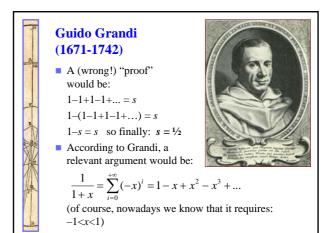
[This] always implies a **mediation** between [historical] concepts and our thinking» (*Truth and Method*, pp. 809-811).


Three quotations: Rorty

Richard Rorty notices that *irony* brings us to think that nothing has

an intrinsic nature,

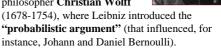
an essence. As a consequence we are induced to believe that the presence of terms 'just', 'scientific', 'rational' in our current vocabulary is **not** a good reason to state that «the research of the essence of justice, science and rationality [...] will bring us **beyond our current language games**» (*Contingency, Irony, and Solidarity*, p. 91).



Guido Grandi (1671-1742)

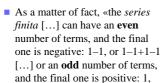
- In 1703, Guido Grandi (1671-1742) noticed that from 1-1+1-1+1-1+... it is possible to obtain "both" the "results" 0 and 1:
- (1-1)+(1-1)+(1-1)+... = 0= 0+0+0+... = 0 1+(-1+1)+(-1+1)+... = 1+0+0+... = 1

The "sum" of the series 1–1+1–1+1–1+... was considered ¹/₂ by Guido Grandi.



In fact mentioned "proofs" of 1-1+1-1+... = 1/2 do not work!

- However...
- ... we have to take into account the following important issue: did the term "convergence" (with its modern meaning) belong to Grandi's vocabulary?
- So could we propose a correct historical analysis of Guido Grandi's series on the basis of the notion of convergence?
- And what about educational implications?
- Let's now consider another historical reference...


Leibniz studied Grandi's series Gottfried Wilhelm Leibniz

(1646-1716) studied Guido Grandi's series in some letters (1713-1716) to the German philosopher **Christian Wolff**

■ If we "stop" the infinite series 1–1+1–1+... (Leibniz, 1716, p. 187), it is possible to obtain both 0 and 1, with the same "**probability**".

Leibniz studied Grandi's series

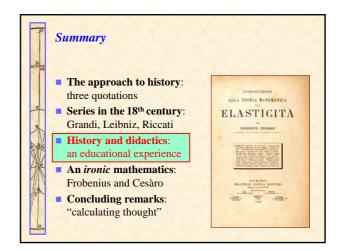
or 1–1+1». Leibnitian conclusion is the following: «when numbers' nature vanishes, our possibility to consider even numbers or odd numbers vanishes, too. [So] we ought to take the arithmetic mean [of 0 and 1], i.e. the half of their sum; and in this case **nature itself respects** *justitiae* **law**» (Leibniz, p. 1716, 187).

Riccati criticized Grandi (and Leibniz)

Forty years later, Jacopo Riccati (1676-1754) criticised the convergence of Grandi's series to ½; in his Saggio intorno al

sistema dell'universo (1754), he wrote: «[Grandi's] argument is interesting, but wrong. [...] The mistake is caused by the use of a series [...] from which it is impossible to get any conclusion, [because] it does not happen that the following terms can be neglected in comparison with preceding; **this property is verified only for convergent series**» (vol. I, p. 87).

Riccati criticized Grandi (and Leibniz)


- In fact, Jacopo Riccati made reference to some fundamental keywords referred to convergence.
- We can say that Jacopo Riccati's vocabulary is clearly different from Grandi's one.

The second seco

4) A second strain of the second strain of the second strain of the second strain of the second strain s

anna / Jospie zen; Janob il saler della fezzioar (****) Poli na s. e z nal Jossani la primife motile projettare nei poli ofi ANNOTAZIONE TIRZA:

Refinite el selve presentan le for convedice reiderte, selimbre el moderer, ele ajo fe se abia fato, el aferte, ele dall' efere fato pre-

An educational experience (students aged 16-18)

- Let us now briefly consider our students' opinions regarding Guido Grandi's series.
- A test (Bagni, 2005) has been proposed to students of two third-year *Liceo Scientifico* classes, total 45 students (aged 16-17 years), and of two fourth-year *Liceo scientifico* classes, 43 students (aged 17-18 years; total: 88 students), in Treviso (Italy).
- Their mathematical curricula were traditional: in all classes, at the moment of the test, students did not know infinite series.

An educational experience (students aged 16-18)

- We asked our students to consider the expression "1–1+1–1+..." (studied "in 1703" by "the mathematician Guido Grandi"), taking into account that "addends, infinitely many, are always +1 and -1" and to express their own "opinion about it" (time: 10 minutes; no books or calculators allowed).
- Some students stated that the "sum" of the considered series is ½ and they made reference to justifications similar to Leibnitian "probabilistic argument".
- Let us now briefly consider, for instance, Mirko's protocol.

An educational experience (students aged 16-18)

Visual elements (the line dividing "finite" and "infinite") is meaningful: at the beginning we have a sequence of 0 and 1.
 Final situation ("infinite") is

1 04	
0	-1
1 04	21
- 📕 🧞 🛛	1.

1-1+1-1+ ... (whiti!)

An educational experience (students aged 16-18)
[1] Researcher: "Why did you write that the result is ½?"
[2] Mirko: "Oh, well, I start with 1, so I have 0, then 1, 0 and so on. There are infinitely many +1 and -1."
[3] Researcher: "That's true, but how can you say ½?"
[4] Mirko: "If I add the numbers, I obtain 1, 0, 1, 0 and always 1 and 0. The mean is ½."
[5] Researcher: "And so?"
[6] Mirko: "The numbers that I find are 1, 0, and 1, 0, and 1, 0 and so on: clearly, for every couple of numbers, one of them is 0 and one of them is 1. So these possibilities are equivalent and their mean is ½."
[7] Mirko: [after 12 seconds] "Perhaps my answer is strange, or wrong, but I don't see a different correct result: surely both the results 0 and 1 are wrong. If I say that the result is one of that numbers, for instance 1, I forget all the other numbers, and 1. Breesercher: "So in your opinion both 0 and 1 cannot be considered the correct mawer."
[9] Mirko: "Alright, and in this case what is the result? I wrote that ½ is the result of the operation because ½ is the mean, so it is a number that, in a certain sense, contains both 0 and 1."

different: we have not "two" numbers: we have to write **a single value** after the arrows: the arithmetic mean, ½.

- The role of **didactical contract** is important: it forced the student to write a single **"result"**.
- Audio-recorded material allowed us to point out a salient short passage (1 minute and 35 seconds, 9 utterances):

An educational experience (students aged 16-18)

- Let us consider two interesting expressions:
 [4] "If I *add* the numbers..."
 [9] "And in this case what is *the result*?"
- So Mirko makes reference to algebraic procedures: a series, in his opinion, is a kind of algebraic operation. It is necessary "to add" the numbers in order to obtain the (one and only) "result".
- Let us remember that Grandi's series has been expressed in the form "1-1+1-1+...", with the remark "addends, infinitely many, are always +1 and -1": the language is algebraic so several students made reference to "algebraic rules".

An educational experience (students aged 16-18)

- Mirko did not make explicit reference to probability: he just tried to find out a result for the considered problem, and this is an educational issue (clearly influenced by the didactical contract); in the 18th century, the probabilistic argument was based upon a different remark.
- What is, nowadays, the correct reaction to be assumed by the teacher?
- To state "Grandi's series converges" is **wrong**; but...
- ...our reaction, as we shall see, would require "irony" (in the sense of Richard Rorty's Contingency, Irony, and Solidarity, pp. 89-90).

The "sum" of nonconvergent series

- Of course Grandi's series is indeterminate.
- Nevertheless it... "converges", for instance, in the sense of Georg Frobenius (1849-1917).

This notion is

based upon ideas of **Daniel Bernoulli** (1700-1782) and **Joseph Raabe** (1801-1859), and has been generalized by **Ludwig Otto Hölder** (1859-1937) and **Ernesto Cesàro** (1859-1906).

Grandi's series and convergence according to Frobenius (Cesàro)

■ With reference to the series *a*₀+*a*₁+*a*₂+..., let us consider the sequence of partial sums:

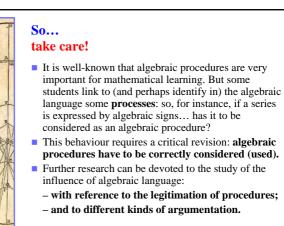
 $s_0 = a_0$ $s_1 = a_0 + a_1$ $s_2 = a_0 + a_1 + a_2$

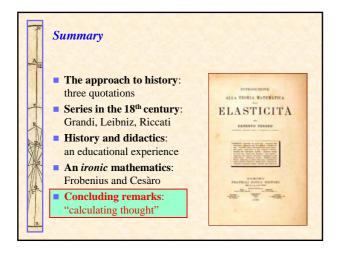
Being $n \ge 0$ let us say σ_n the **arithmetic means** of s_0, s_1, \ldots, s_n .

...

- The considered series converges according to Frobenius if σ₀, σ₁, σ₂, ... converges.
- If we now consider Grandi's series, σ₀, σ₁, σ₂, ... is:
 1, 1/2, 2/3, 1/2, 3/5, 1/2, 4/7...
 and it converges to ½.

take care!


So...


- The statement "Grandi's series does not converge" requires "irony": i.e., in Richard Rorty's words, a subject's frame of mind to discuss his/her own vocabulary, and the awareness that this vocabulary is not «closer to reality than others» (Rorty, *Contingency, Irony, and Solidarity*, pp. 89-90).
- Let us think to our series: partial sums calculated, for instance, after 3, 5, 7 terms: 1–1+1, 1–1+1–1+1, 1–1+1–1+1 etc. are (always) 1.
- Nevertheless, according to Frobenius and Cesàro it would be possible "to distinguish" these different situations: arithmetic means are 2/3, 3/5, 4/7...

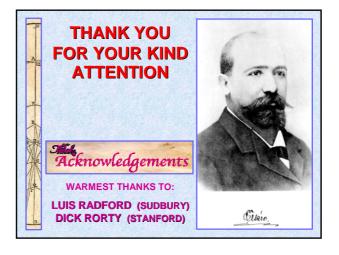
T A REAL B

So... take care!

- Of course we do not suggest just to "compare" two notions of convergence
- (let us underline that in the 20th century some important techniques based upon mentioned ideas of Frobenius and Cesàro have been applied to Fourier series).
- However the considered example can suggest a wide educational approach, according to which different experiences that give sense to mathematical language are correctly considered.

The main problem of the passage from finite to infinite is a cultural one...

- ... and historical issues are important in order to approach it, although, undoubtedly, the historical approach is to be considered together with other educational approaches (see: Radford, 1997).
- This problem requires an appropriate mediation (Gadamer, 2000, 811),
- and, as we noticed, it can take into account Rortian "irony".


An ironic mathematics and Heidegger's "calculating thought" In fact, an "ironic mathematics" can be "mathematically" very deep.

And it can induce our students to "open their eyes", to have a look, awarely, at mathematics itself, and at the world, without the

problems connected to technicality; without, in **Martin Heidegger's** words, the influence of **«calculating thought».**

(a very rare smile of Heidegger...

