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Summary. The influence of visualisation and of verbal and symbolic expressions of main 
infinitesimal methods upon didactics, and in particular its importance for the correct 
characterisation of concepts, is well known. In this paper different ideas and expressions of 
infinitesimal methods in the history and in mathematics education are investigated, with 
particular reference to the limit notion. Historical development of representation registers can 
lead to a parallel development of the notion in students’ minds, and this would make it possible 
to design new ways to overcome some obstacles and to develop students’ ability to use and to 
co-ordinate different registers; however explaining the problems encountered by 
mathematicians in history (who inhabited different paradigms with different social knowledge 
structures and different beliefs) does not necessarily help students with their difficulties. Our 
main contribution resides in showing that dynamic and static ideas of limit are encompassed by 
different semiotic registers. 
 
 

To John Fauvel, 1947-2001 
 

INTRODUCTION 
 

The full discussion of a possible parallelism between history and cognitive growth 
would require a specific theory of knowledge allowing the comparison of the students’ 
growth of knowledge and the historical development of the concepts; moreover it would 
be necessary to point out some remarks concerning the effectivity of such parallelism as 
well as its limitations, mainly connected to different paradigms, with different social 
knowledge structures and different beliefs, that characterised different stages of the 
historical development of the concepts. Our main goal is not so high, exacting: it resides 
in showing that, from the educational point of view, the dynamic and the static ideas of 
limit, as formulated in different historical stages, are encompassed by different semiotic 
registers. 

In this work we shall not give a summary of educational researches devoted to the 
limit notion: we shall describe just some elements of the theoretical framework that we 
are going to consider. 

At least since Eighties several studies show that a full understanding of the limit is 
rather rare (1): Schwarzenberger (1980) states that mathematical difficulties connected 
to classical analysis cannot be simply explained: according to him, an intuitive 
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expression of main infinitesimal ideas implies difficulties for the students. Tall 
underlines that such difficulties are frequently connected to mathematical aspect of 
analysis, not to cognitive aspects: in other words, the limit process is intuitive from the 
mathematical point of view, but not from the cognitive one (Tall, 1985, p. 51), so 
sometimes cognitive images conflict with the formal definition of limit. The limit of a 
function is often considered as a dynamic process (Tall & Vinner, 1981, pp. 156-168), 
so it is considered in the sense of potential infinity and infinitesimal. 

Concerning representation registers (2), verbal registers are important for the 
introduction of infinitesimal concepts, mainly referred to potential infinitesimal; but it is 
important to underline that a verbal register cannot exist on its own because it depends 
on the community of practice and on the different meanings that individuals usually give 
to words and to ideas; so words themselves can lead to doubts and misconceptions. The 
most common words to communicate infinitesimal notions are: tends to, limit, 
approaches, converges; clearly these words are not equivalent as regard their everyday 
meanings and students hardly recognise that such expressions have the same 
mathematical meaning (Cornu, 1980, Davis & Vinner, 1986, pp. 298-300; Monaghan, 
1991, pp. 23-24). 

Verbal representation registers hardly express the limit concept completely: cognitive 
conflicts do exist in the learning of limits, so verbal representations can be considered 
both a limitation and a help for the construction of this concept; and the presence of 
misconceptions is possible, connected to the use of potential infinitesimal, too. However 
the direct use of symbolic registers (and of notions of actual infinity and infinitesimal) 
would be too exacting in the High School: it is difficult for the students to understand 
the limit concept just by ε-δ definition, and of course a weak understanding of the 
definition itself can be an obstacle for the full comprehension of the limit notion 
(Tsamir & Tirosh, 1992) (3). 
 
 

FROM HISTORY TO MATHEMATICS EDUCATION 
 

A. Sfard states that, in order to speak of mathematical objects, it is necessary to make 
reference to the process of concept formation; and she supposes that an operational 
conception can be considered before a structural one (Sfard, 1991, p. 10). Concerning 
the savoir savant (a well known Chevallard’s expression ), the historical development of 
many notions can be considered as a sequence of stages: an early, intuitive stage, and so 
on, until the mature stage; and several centuries can pass between these stages. Of 
course it is necessary to theorise further such first description, mainly in order to 
overcome a merely evolutionary perspective: such savoir cannot be considered 
absolutely, so according a traditional classical teleological vision: it must be understood 
in terms of cultural institutions, as Chevallard has pointed out; however a first 
consideration of the situation may be useful. 

In early stages (articulated in several different experiences, to be considered with 
reference to paradigms available at the times), the focus seems mainly operational; the 
structural point of view is not a primary one. As we shall see with respect to the limit 
notion, until Cauchy’s work some ideas implicitly connected to actual infinity were not 
considered. From the educational point of view, a similar situation can be described: in 
an early stage pupils approach notions by intuition, without a full comprehension of the 
matter; then their learning becomes better and better, until it can be considered mature. 
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Is it possible and educationally useful to consider an analogy between these 
situations, i.e. between historical development and cognitive growth? Is it possible to 
point out in the passage from the early stage to the mature one, in our pupils’ minds, 
some doubts and reactions that we can find in the passage from the early stages to the 
mature one as regards the savoir savant? 

We shall not give general answers to such crucial questions: as noticed in the 
Introduction, the full discussion of a parallelism between history and cognitive growth 
would require a specific theory of knowledge (4): this is not the goal of our work. 
However, we must underline that processes of teaching-learning take place nowadays, 
after the full development of the savoir savant; so the transposition didactique, whose 
goal is initially a correct development of intuitive aspects, can be based upon the results 
achieved in the full development of the savoir savant: in fact, pupils’ reactions are 
sometimes similar to reactions noticed in mathematicians in history (Tall & Vinner, 
1981) and such correspondence can be an important tool for teachers. But a major issue 
is related to the correct interpretation of history: as noticed, its use must consider the 
real evolution of the savoir in terms of cultural institutions. So we shall make reference 
mainly to the use of different semiotic registers, particularly in order to enhance the 
students’ understanding of static and dynamic ideas of the concept of limit.  
 
 

HISTORICAL ROOTS: POTENTIAL AND ACTUAL INFINITESIMAL 
 

Concerning the methodology of the historical survey, we are going to propose some 
examples that can be considered relevant in order to present the evolution of the limit 
notion, in the sense of the parallel evolution of the cognitive growth, too (although the 
possibility of such parallel evolution cannot be stated uncritically); our main interest is 
referred to different representation registers employed: in particular, the passage from 
the dynamic character of the limit to the static one will be considered. 

Historically, both notions of actual and potential infinity are ancient (5): Aristotle of 
Stagira (384-322 b.C.) distinguished actual and potential infinity, but mathematical 
infinity, in Aristotle’s opinion, is merely potential (he, avoiding paradoxes, refused 
actual infinity: Bostock, 1972-1973). As regards infinitesimal, according to the concept 
of number line, the ancient conception is only potential, although interesting ideas can 
be related to the exhaustion argument: in the next paragraph we shall analyse such 
argument and we shall point out that it can be related to some ideas in the sense of 
actual infinitesimal; however, as we shall see, proofs by exhaustion argument cannot be 
considered as real limits (6). 

The implicit opposition between actual and potential infinitesimal became evident 
after Calculus’ birth, so after works by I. Newton (1642 -1727) and G.W. Leibniz (1646-
1716): each of them was mainly responsive to his own primary intuition, which in the 
case of Newton was physical and in the case of Leibniz algebraic. The importance of 
notions of actual and potential infinitesimal was remarkable in many researches about 
Calculus’ foundations (Bos, 1975); F. Enriques (1871 -1946) underlined any ambiguity 
in the Leibnizian concept of differential: derivation is considered by Leibniz as quotient 
of two differentiae or (as named by Jo. Bernoulli and by L. Euler) of two differentials; 
however, “it is not clear in Leibnizian works if these increments must be interpreted 
only in potential way, like variable and evanescent quantities, or as actual infinitesimal” 
(Enriques, 1938, p. 60: we shall reprise later the idea of evanescent quantity in Euler’s 
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work: McKinzie & Tuckey, 2001) (7). In 20th century, mathematicians reprised some 
Leibnizian ideas: according to A. Robinson, Leibniz knew by intuition that 
infinitesimals theory brings to the introduction of ideal numbers that can be considered 
infinitely small if compared to real numbers. However, neither Leibniz nor his disciples 
nor his successors gave any rational developments to this idea (Robinson, 1974; see 
interesting suggestions in: Todorov, 2001). 

L. Euler (1707-1783) refused the notion of infinitesimal as quantity lower of any 
given one and different from zero (Kline, 1972); he was able to distinguish the 
differential of a function from its increment, but he rarely followed this distinction. He 
wrote in his Institutiones Calculi Differentialis: 

 

“Every quantity can be reduced until it becomes zero and it completely vanishes. But 
an infinitely small quantity is an evanescent quantity and therefore the thing itself is 
equal to zero. Moreover this is in keeping with the definition of infinitely small things in 
which we say that they are lower than any given quantity; surely it would be zero 
because, if it is not equal to zero, it would be possible to assign to itself an equal 
quantity, and this is against the hypothesis” (Euler, 1755-1787, quoted in: Kline, 1972). 

 

The idea of evanescent quantities is important; unfortunately Euler did not see the 
possibility that an evanescent quantity can be a different kind of quantity from a 
numerical constant. Euler was aware of problems with actual infinitesimals (so he seems 
to cover himself against objections), but when he actually did mathematics, he preferred 
a different approach (see the Chapter 7 of Book 1 of Euler’s Introductio in Analysin 
Infinitorum: “Du développement des Quantités exponentielles & logarithmiques en 
Séries”: Euler, 1796, 1st edition in French, pp. 84-91; concerning Euler’s calculation 
involving infinite and infinitesimal quantities and its interpretation based upon 
hyperreals: McKinzie & Tuckey, 2001). 

As previously stated, our historical summary does not deal just with concepts: it 
cannot forget the representations of them, so it must consider the registers in which 
concepts were (and are) expressed. In order to do that we are going back to one of the 
most important achievements of Greek mathematics. 
 
 

EXHAUSTION ARGUMENT AND REPRESENTATION REGISTERS 
 

The attribution of the exhaustion argument is based upon Euclid’s Elements: for 
instance, the Proposition 10 of Book 12, which proves that any cone is a third part of the 
cylinder with the same base and equal height, is attributed to Eudoxus of Cnidus (405-
355 b.C.; see: Bourbaki 1963, p. 171; Dieudonné, 1989, pp. 63-64; the term exhaustion 
was used since 17th century: Giusti, 1983, p. 255). 

Proofs by exhaustion argument (8) are based upon the following proposition: 
 

Proposition 1 of Book 10. Two unequal magnitudes being set out, if from the greater 
there is subtracted a magnitude greater than its half, and from that which is left a 
magnitude greater than its half, and if this process is repeated continually, then there 
will be left some magnitude less than the lesser magnitude set out. And the theorem can 
similarly be proved even if the parts subtracted are halves. 

 

In the proof of this proposition, Euclid applies the so-called Eudoxus’ postulate:  
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Definition 4 of Book 5. Magnitudes are said to have a ratio to one another which 
can, when multiplied, exceed one another. 

 

So in Elements this postulate is a definition: in fact, for instance, the set of rectilinear 
and curvilinear angles is not a class of Archimedean magnitudes (Proposition 16 of 
Book 3). And this consideration of curvilinear angles is interesting: it shows that Greeks 
were not unaware of quantities that can be infinitesimal (i.e. quantities that are not real 
number constants: Tall, 1982). 

As above stated, nowadays the exhaustion argument can be considered interesting 
with reference to representation registers employed, too. First of all, the exhaustion 
principle can be expressed by verbal registers, as Euclid himself did in the quoted 
Proposition 1 of the Book 10; however we must point out some fundamental remarks. 
First of all, let us notice that the exhaustion argument is operating at a formal level, 
whereas “verbal” seems to suggest a more intuitive level. Moreover, as regard verbal 
registers, and generally all kinds of registers, it is important to underline that there is not 
a single register of a given kind: in fact the nature of a register depends on the 
community of practice in question and frequently it is indivisibly linked from other 
conceptual aspects. For instance, verbal registers make reference to words and to the 
meanings of those words, meanings that often link to other registers, too (e.g. verbal 
registers are communicating internally and externally with conscious or inconscious 
links to spatial, temporal and other senses). So when we make reference to registers, we 
must always consider, explicitly or implicitly, such dependence on various cultural 
frameworks. 

We can express a proof by exhaustion argument by visual registers, too: the proof of 
the Proposition 2 of Book 12, according to which circles are to one another as the 
squares on their diameters, can be based upon the visual representation of a circle and of 
some inscribed and circumscribed similar polygons. 

Let’s notice moreover that it is possible to express the exhaustion argument by 
modern symbolic registers (see for instance: Carruccio, 1972, p. 167). However, 
concerning either epistemological or educational issues, we must underline that clearly 
the exhaustion principle can be referred to an infinitesimal situation; but the question is 
the following: is it possible to point out a limit (in modern sense) in the exhaustion 
argument? Several authors do not agree with such statement: so the exhaustion 
argument cannot be considered equivalent to a real limit (Kline, 1972, pp. 99-100) (9). 
And the non-equivalence is not only in the formal sense: the most important differences 
pertain to the ontological realm (Radford, 1997). In our opinion, a direct comparison 
between a proof by exhaustion argument and a modern limit would be historically and 
epistemologically weak, nearly meaningless: while “ internalist history of mathematics 
(...) tends to interpret the past in terms of modern concepts, more recently researchers 
have tried to take a more holistic view, with mathematics seen as a component of the 
contemporary culture; the historian’s task is then to discover the influences, co nditions 
and motivations (...) under which problems arose” (Grugnetti & Rogers, 2000, p. 40). 
We completely agree. 
 
 

THE LIMIT IN WALLIS, IN CAUCHY, IN WEIERSTRASS 
 

Historical roots of the limit notion are not as ancient as historical roots of infinitesimal 
methods (Rufini, 1926). J. Wallis (1616-1703), in his Arithmetica infinitorum (1655), 
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introduced an arithmetical concept of the limit of a function, i.e. the number whose 
difference from the function can be lower than any given quantity. M. Kline underlines 
that “its formulation is still vague, but there is the correct idea” (Kline, 1972; as regards 
this Wallis’ vague formulation, we shall reprise the important question of correctness at 
the end of this paragraph). Another mathematician, in 17th century, worked about the 
limit: according to G. Loria, in Elementum tertium from Geometriae speciosae elementa 
(1659) by P. Mengoli (1635-1686), “this mathematician showed to get a clear idea of 
the limit concept” (Loria, 1929 -1933, p. 526). Some interesting notes are in Vera circuli 
et hyperbolae quadratura (1667) by J. Gregory (1638-1675) and in Newton’s 
masterpiece, Philosophiae naturalis principia mathematica (1687; moreover: 
Castelnuovo, 1938; Boyer, 1969; Menghini, 1982; Edwards, 1994). 

We must underline that these limit notions were sometimes mainly related to 
sequences and to series: F. Viète (1540-1603), in his Varia responsa (1593), calculated 
the sum of a geometric series; P. de Fermat (1601-1665), too, knew this result; in 1655 
A. Tacquet (1612-1660) and J. Wallis published it in Arithmeticae theoria et praxis 
accurate demonstrata and in Arithmetica infinitorum. In particular, Tacquet underlined 
that the passage from a “finite progression” to an infinite series is “immediate” (Loria, 
1929-1933, p. 517). Gregory of St. Vincent (1584-1667) in his Opus geometricum 
(1647) referred the paradox of Achilles and the Turtle to a geometric series and wrote: 

 

“The conclusion of a progression is the end of the series that the considered 
progression does not reach, although it is indefinitely lengthened; it can approach such 
value as close as it is possible” (quoted in: Kline, 1972).  

 

Let us now consider an interesting educational reference: Gregory’s comment 
illustrates a major misconception in limits. He refers to a sequence whose terms are 
always different from the limit (about limits of sequences and sums of series, see: 
Boyer, 1969 and 1982); Tall and Vinner underlined that frequently students think that sn
→l means that values of the sequence sn just approach the limit l, but never reach it (a 
nice popular example is whether 0.999... is equal or less than 1; we examined it in: 
Bagni, 1998); in this situation, the limit of a function is clearly considered as a dynamic 
process (Tall & Vinner, 1981, pp. 156-168), so it is considered in the sense of potential 
infinity and infinitesimal. (10) 

G. Vitali (1875-1932) noticed that “of course the convergence could not be 
considered before the limit notion” (Vitali, 1979, p. 404) and the limit was not cor rectly 
considered as the fundamental analytical concept (in particular, in 17th and in 18th 
centuries, the question of the existence of the limit of the sequence of partial sums was 
not considered): however we can state that the limit process is met before the limit 
concept. 

According a traditional classical vision, A.L. Cauchy (1789-1857) was the first 
mathematician to make a rigorous study of the Calculus (11). In our opinion, correctness 
must be always investigated in its own conceptual context and not against contemporary 
standards, in order to avoid the imposition of modern conceptual frameworks to works 
based upon different ones (so Euclid and Wallis were rigorous in their own ways). 
However Cauchy’s Cours d’Analyse algébrique (Paris, 1821), a book particularly 
designed for students at École Polytechnique, must be considered a fundamental treatise 
from the formal point of view, too, and it developed many basic analytical theorems as 
rigorously as possible. 
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Let us remember Cauchy’s definition of limit an d of infinitesimal (from Cours 
d’analyse, p. 4: Cauchy, 1884-1897): 

 

“When values of a variable approach indefinitely a fixed value, as close as we want, 
this is the limit of all those values. For instance, an irrational number is the limit of the 
different fractions that gave approximate values of it (…). When values of a variable are 
(…) lower than any given number, this variable is an infinitesimal or an infinitesimal 
magnitude. The limit of such variable is zero” (quoted in: Bottazzini, Freguglia & Toti  
Rigatelli, 1992, pp. 327-328; as regard original texts, see: Smith, 1959). 

 

So Cauchy introduced the fundamental distinction between constants and variable 
quantities, although he had no formal description of real numbers as ordered fields 
satisfying a list of axioms. 

Would it be possible to express Cauchy’s verbal definition by symbolic registers? We 
shall not give an answer: “Mathematics is not just text; it lives in the minds of people 
and can, to an extent, be disclosed by interpreting the artefacts they have produced” and 
“these artefacts, inscriptions, instruments, books and technical devices, have been 
developed in particular places for particular reasons” (Grugnetti & Rogers, 2000, p. 46). 
Cauchy’s formulation was expressed in the paradigm available  at the time, and its 
formulation can lead to the use of different registers: Tall notes that “there are several 
ways of visualising infinitesimals as points of as line”, which allow “the novice to see 
infinitesimals as variable points that are arbitrarily smaller than any positive real 
constant c. This is analogous to the notion prevalent at the beginning of the 19th century 
when Cauchy described infinitesimals as variable quantities that tend to zero” (Tall, 
2001, p. 225). 

So the modern limit notion, pointed out since 17th century by Wallis, Mengoli and, 
finally, by Cauchy, is mainly expressed by verbal representations (although it is 
important to remember that such verbal registers cannot be isolated, for instance, from 
the sensory perception of arbitrarily small things). 

K.T.W. Weierstrass (1815-1897) gave the modern definition of limit and of 
continuous function: in fact he stated that the function x→f(x) is continuous in x = c if, 
for any real number ε>0, we can find a real number δ>0 such that for every x such that |x
−c|<δ we have |f(x)−f(c)|<ε. Let us quote M. Kline, who noticed that “Weierstrass’ work 
improved previous works by Bolzano, Abel and Cauchy. Weierstrass tried to avoid 
intuition (...) and did not like the sentence a variable approaches a limit because it 
would suggest ideas of time and motion” (Kline, 1972).  

With respect to representation registers, we must notice that Weierstrass’ conception 
and definition of limit really allow a modern symbolic representation: “for every ε>0 
there is δ>0 such that for every x such that |x−c|<δ being x ≠ c we have |f(x)−l)|<ε“ can 
be considered quite equivalent to Weierstrass’ definition of the limit l (and it can be 
expressed using quantifiers, by symbols like ∀, ∃ etc.): so we conclude that Weierstrass’ 
definition (the so-called ε-δ definition) finally leads to the use of symbolic 
representation registers. However, let us underline once again that it would be 
misleading to make reference to a single symbolic representation register: there are 
different symbolic registers in different communities of practice. Leibniz, Newton, 
Cauchy, Robinson had their own symbolic registers which differ from each other and of 
course differ, too, from that of Weierstrass. 
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From the educational point of view, the main difficulty for students dealing with the 
ε-δ definition is the static character of the formal theory versus the dynamic character of 
the cognitive approach: the consideration of historical development of the concept of 
limit, mainly with reference to the use of different semiotic registers, can be useful in 
order to make possible the correct formulation of the static and the dynamic ideas of 
limit. 

Let us summarise in the following table some remarks previously pointed out. 
 
 

  Potential infinitesimal      Actual infinitesimal 
 

  Verbal registers       (a new conception of 
         number line referred 

  (Anaxagoras)       to an ordered field 
         satisfying the 
         completeness axiom) 

  Exhaustion argument 
(original formulation is verbal, 
visual registers and symbolic 
registers can be used) 

 

  Wallis DYNAMIC IDEA   STATIC IDEA 
       OF LIMIT 

Euler (dealing with          A. Robinson 
      evanescent quantities)  

 

Cauchy (says this variable 
      is an infinitesimal) 

        Weierstrass (his 
        definition leads to 
        the use of symbolic 
        registers) 

 
 
 

FINAL REFLECTIONS 
 

In our opinion, the use of representation registers as a tool to analyse both historical and 
educational aspect of the limit notion can be an interesting track to follow, although the 
question to be considered is that it is not completely clear how philogenetic processes 
are related to ontogenetic ones. Moreover, from the educational point of view, 
experimental verifies would be necessary: many aspects influence the learning of 
infinitesimal concepts, e.g. some clauses of didactic contract; those influences can be 
pointed out by tests and interviews; of course, concerning experimental aspects, it would 
be necessary to identify sampling criteria and, for instance, pre-course intuitions (and to 
consider the experimental contract). In this work we don’t propose experimental 
verifies: so we don’t give now general results and conclusions, but we  just suggest some 
final reflections. 

“The limit notion occurs in a number of different guises. (...) All of these have in 
common a process of getting arbitrarily close to a fixed value (the limit). In every case, 
the same symbolism is used both for the process of convergence and also for the concept 
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of limit” (Tall, 2001, p. 232; Tall & Al., 2001): the historical development allows us to 
consider different approaches, related to potential or to actual infinitesimal and to 
different representation registers; however, from the educational point of view it is 
really difficult to introduce the limit notion without making reference to the limit 
procept (Gray & Tall, 1994). 

In our opinion, the problem of the passage from discrete of continuum is mainly a 
cultural one, and historical issues are important in order to approach it and to overcome 
many difficulties (Radford, 1997; Furinghetti & Radford, 2002) (12). Further researches 
can be devoted to clarify what category of persons should be acting on above considered 
argument and in what way: the remarks about knowledge of the possible parallelism 
between use of registers and historical development are addressed towards students, 
teachers, mathematics educators, researchers in mathematics education. Surely several 
questions are still opened: there is a possible parallelism between the historical 
development of ideas about infinitesimals and the developments within a student’s 
understanding; what follows? For instance, the student will be really helped by knowing 
more of the history? What about the important reading of primary sources? And what is 
teacher’s role? Is it the mathematics educator responsible for training the teachers who 
should be aware of this parallelism and how does this help in teacher-training? (13) 

We propose a final reflection: using examples from history of mathematics can be 
effective to introduce some fundamental topics, e.g. the static and the dinamic ideas of 
limit with reference to semiotic registers employed; it allows interesting a-priori analysis 
of the difficulties of the students and it makes it possible to design new ways to 
overcome classical obstacles. However explaining the subtle problems encountered by 
savants in history does not necessarily help students with their difficulties, since 
mathematicians in history just inhabited different paradigms with different social 
knowledge structures and different beliefs. So using examples from history must be 
controlled in order to obtain full learning, for instance by evaluating empirical details of 
the work with students. 
 
 

Author’s warmest thanks to David Tall, who kindly offered every possible help. 
 

The Author wishes to thank the three referees of the Journal, who gave many important 
suggestions. 

 
 
 

Notes 
 

(1) Several works were devoted to didactics of the limit: A. Sierpinska states that 
obstacles can be classified into five groups (Sierpinska, 1985): in the first one, named 
Horror infiniti, we find the refusal of the status of mathematical operation for the 
limit and the consideration of a concrete approaching; then Sierpinska considers 
obstacles connected to the function concept, to the geometric interpretation of limits, 
to logic and to symbology (Sierpinska based her work upon the topological 
conception of limit, while, for instance, B. Cornu’s research is based upon the 
numerical one: Cornu, 1991; Artigue, 1998). A lot of references can be quoted: Tall 
& Vinner, 1981; Cornu, 1980, 1981; Orton, 1983; Davis & Vinner, 1986; Sierpinska, 
1987; Mamona, 1987; Monaghan, 1991; Tall, 1990a, 1990b, 1994; as regard 
summaries: Mamona-Downs, 1990, Gagatsis & Dimarakis, 1996. 
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(2) As regards a definition of representation registers, see: Duval, 1995. See moreover: 
Kaput, 1991; stimulating suggestions can be found in: Thurston, 1994. 

(3) We just notice that we cannot consider didactics of Calculus only with reference to 
the limit notion: for instance, concerning the concept of derivative, we remember the 
primary role played by cognitive roots (the local straightness is the cognitive root 
with reference to derivative: Tall, McGowen & DeMarois, 2000); this remark deals 
with the general function concept. Many researches (Trouche, 1996, based upon: 
Rabardel, 1995; Artigue & Al., 1997) underline that the use of technological media 
induces behaviours based upon the comparison of different points of view, so it 
requires a remarkable ability to co-ordinate different semiotic registers (Confrey, 
1992, Dubinsky, 1995, Nemirovsky & Noble, 1997; Yerushalmy, 1997; see 
summaries in: Tall, 1996; Artigue, 1998). 

(4) It seems to bear out a famous statement by Piaget and Garcia, according to which 
historical and individual development are linked (see: Piaget & Garcia, 1983; of 
course, by that, we do not support this idea by Piaget and Garcia in all educational 
situations). Such considerations are supported by some classical works by Chevallard 
(1985) and Sfard (1991; concerning Sfard’s work, let’s underline that she tackles the 
problem by using Piaget’s epistemology); however, we don’t concentrate on the 
discussion about eventual problems of co-ordinating results from different theoretical 
frameworks. 

(5) Anaxagoras of Clazomenae (500?-428 b.C.) wrote: “For neither is there a least of 
what is small, but there is always a less. For being isn’t non -being” (quoted in 
Geymonat, 1970, I). If we consider that underlying the concept of limit (but 
independent of it) there is the concept of the number system as a continuum and an 
Archimedean ordered field, Anaxagoras seems to be addressing the number system 
rather than limit directly; and it would be necessary to consider the difference 
between magnitude and number in Greek contribution, mainly with reference to the 
different ways in which a geometric object might be conceived (see the two 
definition of proportion in Euclid: Def. 7 of Book 5 and Def. 21 of Book 7). The 
concept of number line is quite different as seen by Greeks, Cauchy or Robinson; the 
insight of modern theories lies in the possibility of considering systems having 
different kinds of quantity (for instance, Cauchy distinguished between constants and 
variable quantities: in his own opinion, infinitesimals are quantities but not constants; 
however such distinction between constants and variable quantities cannot be 
considered until the introduction of modern arguments: Tall, 1982). 

(6) Results to be proved by reductio ad absurdum must be known by intuition or by 
heuristic techniques that were not accepted by Greeks as full proofs. 

(7) Leibniz wrote (1695): “When we mention quantities (…) indefinitely small (the 
lowest we can know) we mean that we want signify quantities (…) as small as we 
want, so the mistake if we should make is lower than any given quantity” (quoted in: 
Kline, 1972). Some notes written by Leibniz to Wallis in 1690 are interesting: “It is 
useful to consider quantities infinitely small such that, when we look for their 
quotient, they cannot be considered equal to zero, but that are refused when they 
appear together greater quantities. So, if we have x+dx, dx is refused. But the 
situation is quite different if we look for the difference between x+dx and x. In a 
similar way, we cannot consider xdx and dxdx together. So if we must differentiate 
xy, we write (x+dx)(y+dy)–xy = xdy+ydx+dxdy. So, in every particular situation, the 
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mistake is lower than every finite quantity” (Leibniz, 1849 -1863, IV, p. 63). 
Infinitesimal methods had, in 18th century, some active opponents, like G. Berkeley 
(1685-1753), who wrote the pamphlet The Analyst, or a discourse addressed to an 
infidel mathematician. He stated: “I confess that the no tion of a quantity infinitely 
lower than every sensible or imaginable quantity goes beyond my capability. But the 
notion of a part of this infinitesimal quantity such that it is still infinitely lower than 
itself, this is an infinite difficulty for every man” (Arrigo & D’Amore, 1992, p. 123). 
M. Rolle (1652-1719) himself expressed doubts about the settlement of infinitesimal 
notions: he was not certain about the correctness of Leibnizian Calculus, that “he 
considered as a sort of successful trick” (Bottazzi ni, 1990, p. 27). J.-B. d’Alembert 
(1717-1783) stated: “A quantity is something or it is nothing: if it is something, it did 
not become zero yet; if it is nothing, it really became zero. The supposition that there 
is an intermediate state between something and nothing is a wild fancy” ( Mèlanges 
de litèrature, d’histoire et de philosophie, p. 249, quoted in: Boyer, 1982). 

(8) The principle of exhaustion is used in many propositions in Book 12 of Elements: 
main results are Prop. 2, 5, 10, 18. 

(9) For instance, G. Saccheri (1667-1733) in his Euclides ab omni naevo vindicatus, 
wrote about the Prop. 2: “Euclid previously proved (Prop. 1) that similar polygons 
inscribed in circles are to one another as the squares on their diameters; then he 
would deduce the Prop. 2 by considering circles as polygons with infinitely many 
sides” (Saccheri, 1904, p. 104). But Euclid (and Eudoxus, too) never used infinity 
according to this idea (Euclid, 1970, p. 931). 

(10) The question of whether a sequence can reach its limit or not can be considered a 
philosophical one: some sequences (e.g. constant sequences) really do reach the limit; 
the main question is whether the prototypical sequences getting closer and closer do 
reach the limit at infinity in some sense: in fact, this potential process may never 
reach its limit; and once again this brings to a cognitive conflict, where cognitive 
images clash with the mathematical formal definition. Moreover it is important to 
underline that each representation register actually has a different measure of 
closeness (see D. Tall’s Graphic Calculus: Tall, 1986; as regard inconsistencies: 
Tall, 1990b). 

(11) Let us just quote some words by the young N.H. Abel (1802-1829): “Cauchy is a 
fool”, but he is the only man “who knows the real way to do mathe matics” and “who 
nowadays deals with pure mathematics” (Bottazzini, 1990, p. 86).  

(12) Concerning some avenues of research, we remember that Lakoff and Nuñez (2000) 
argue that conceptual metaphor plays a central role into mathematical ideas like 
infinity and infinitesimal (see for instance the Basic Metaphor of Infinity; of course 
their work deals with many other mathematical concepts, too). The fundamental 
work by Lakoff and Nuñez is mainly devoted to cognitive aspects: embodiment is 
one of the most important issues of the research in mathematics education and it is 
important to investigate several subtle connections between perceptions and symbols; 
however from a strictly epistemological point of view, the crucial point is the passage 
from discrete to continuum; and metaphorical reasoning, very important from the 
educational point of view, must be controlled by the teacher in order to avoid 
misguided generalisations (let us remember, for instance, difficulties with non-
convergent series; cases of overgeneralization are discussed in: Bagni, 2000). 
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(13) Concerning teachers, a relevant epistemological skill is needed! Suggestions can be 
found, for instance, in: Weil, 1980; Swetz, 1982, 1989, 1992, 1995; Katz, 1986; 
Fauvel, 1990; Anglin, 1992, Marchisotto, 1993, Nobre, 1994, Jahnke, 1995, Siu, 
1995, Calinger, 1996, Furinghetti & Somaglia, 1997. 
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