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Summary. In this paper some common mistakes are investigated, referred to linear mappings and 
to the solution of algebraic equations, with reference to High School students (students aged 16-19 
years). We conclude that pupils sometimes improperly extend «simple» rules, and this is caused by 
algebraic weakness and by affective elements, too. As regards strategies against misguided 
generalisations, we underline that the effect of counterexamples with pupils is frequently weak, 
since often they are not able to interpret counterexamples in an adequate way. 

 
 
 

1. ARE ALL FUNCTIONS LINEAR MAPPINGS? 
 

As regards «certain side routes which can be taken by a learner», A. Sfard writes: «The 
student may manipulate a concept through a certain prototype – for example, the data 
collected by Markovitz et Al., 1986, show that beginners tend to imagine linear mappings 
whenever the notion of function is mentioned» (Sfard, 1991, p. 21). 

Indeed the property of a function to be a linear mapping seems to be a fundamental 
rule for several students. Every mathematics teacher knows mistakes like: 

 

 (a±b)2 = a2±b2  or: (a±b)3 = a3±b3  etc. 
 

 a b±  = a b±   or: a b±3  = a b3 3±    etc. 
 

 sin(a±b) = sina±sinb or: cos(a±b) = cosa±cosb 
 

 loge(a±b) = logea±logeb 
 

Really they are not rare: their presence can be underlined in students’ protocols in 
several school-levels (as regards algebraic misguided generalisations, we indicate: 
Tietze, 1988 and Malle, 1993; for High School students, too, pupils aged 14-19 years, 
and for university students, so... not only for beginners: Arzarello, Bazzini & Chiappini, 
1994; as regards High School students, we consider fundamental: Matz, 1982). Why? 
Can we state that students simply forget that functions like x→x2, x→ x , x→sinx, x→
logex, ... cannot be considered as linear mappings? 



We shall call the misconception that causes those mistakes misconception of linear 
mappings. But, as we shall see, this is just an operational misconception (caused by an 
over-use of metaphorical projections, too): it seems that several students do not really 
think that the mentioned functions are linear mappings; however, their behaviour is 
sometimes clear: operationally, x→x2, x→ x , x→sinx, x→logex, ... are frequently 
considered as linear mappings (see: Markovitz, Eylon & Bruckheimer, 1986). So, 
according to A. Sfard, «there is probably much more to mathematics than just the rules of 
logic. It seems that to put out finger on the source of its ostensibly surprising difficulty, 
we must ask ourselves the most basic epistemological questions regarding the nature of 
mathematical knowledge» (Sfard, 1991, p. 2). 

 
2. ANOTHER COMMON MISTAKE 

 

Students know that: 
 

 )()( xBxA =   ⇔ cxBcxA +=+ )()(  (c∈R) 

 )()( xBxA =   ⇔ )()( xBkxAk ⋅=⋅  (k∈R  ∧  k ≠ 0) 
 

Sometimes, these rules are improperly extended and bring to the mistakes: 
 

 )()( xBxA =   ⇒ )()( xBxA =  

 [ ] [ ]22 )()( xBxA =   ⇒ )()( xBxA =  
 

and, with reference to inequalities: 
 

 )()( xBxA <   ⇔ )()( xBkxAk ⋅<⋅  (k∈R  ∧  k ≠ 0) 
 

We shall call this misconception balance misconception (it is not very different from 
the misconception of linear mappings, previously introduced: so it can be considered an 
operational misconception): if we “do” the same “operation” op in both members of the 
equation (inequality), we shall obtain a new equation (inequality) equivalent to the 
original one: 

 

 )()( xBxA =   ⇒ [ ] [ ])()( xBopxAop =  ∀op 
 

But, of course, this is not always true... How does it happen that there are similar 
mistakes in protocols by High School pupils (regarding students aged 14-19 years)? 

It is important to underline that the mistakes we mentioned can be considered similar; 
there is a correct rule, and it is rather “simple”: students accept it as a natural, reliable 
one. So they seem to be induced to extend (improperly) this rule to other cases, that are 
quite different from the original one. 

In this paper, we shall analyse some improper generalisations of “simple rules”, with 
reference to High School students (students aged 16-19 years). We shall open our study 
with the investigation of some cases; we shall consider: 

 

•    a mistake about linear functions (the case of Sandra); 
 

•    a mistake about the solution of a quadratic equation (the case of Alberto); 
 



•    a mistake about Calculus (the case of Matteo). 
 

Then we shall present: 
 

•    an experimental research about trigonometry. 
 

3. SOME HIGH SCHOOL STUDENTS 
 

3.1. Sandra and linear mappings 
 

Let us consider the case of Sandra, an High School student of average mathematical skill, 
aged 17 years (4th class of a Liceo scientifico, in Treviso, Italy); she wrote in a protocol 
the following solution of the equation (being x∈R): 

 

 loge(x
2+7) = loge7  ⇒  logex

2+loge7 = loge7  ⇒  logex
2 = 0  ⇒  x = 1 

 

and (in the same protocol) the equality: 
 

 1loglog94
ee ea ++  = 0194 +⋅+a  = 94 +a  = a2+3 

 

So she considered the functions x→logex and x→x2 as a linear mappings. 
Sandra’s interview took place in the classroom, in other pupils’ presence: 
 

Teacher: «First of all, let us consider the development of: loge(x
2+7). Why did you 

write loge (x
2+7) = logex

2+loge7?» 
Sandra: «It seemed to me a natural thing to do». 
Teacher: «Why?». 
Sandra: «I think that there is a property that states something like this». 
Teacher: «There are no properties to simplify loge(a+b). Do you remember any 

property about it?» 
Sandra: «I don’t remember, now: we studied the function x→logex several months 

ago». 
Teacher: «So why did you think that loge(a+b) = logea+logeb?» 
Sandra: «Well, it seems correct». 
 

[Let us underline that the statement «it seems correct» is really interesting: Sandra 
understood that her solution is incorrect, in teacher’s opinion, but she noticed that it 
seems (at the moment of the interview) correct; she did not say it seemed correct (at the 
moment of the test): this suggests that, at the moment of the interview, she was still 
persuaded about the correctness of the “property” log e(a+b) = logea+logeb]. 

 

Teacher: «And is it correct?» 
Sandra (worried): «No». 
Teacher: «Why? Did you change your mind?» 
Sandra: «You told me I made a mistake. So I made something wrong». 
 

[So Sandra hardly accepts the teacher’s correction. Then the teacher proposes a 
counterexample]. 

 



Teacher: «Let us consider this example: loge(e+1). We know that logee = 1 and loge1 
= 0. Well, if now we should accept that loge(a+b) = logea+logeb, we must write: 
loge(e+1) = logee+loge1 = 1+0 = 1. Do you think it is true?» 

Sandra (after a moment): «No. It is false». 
Teacher: «Why?» 
Sandra: «Of course it is false: 1 is logee so it cannot be loge(e+1)». 
 

[So Sandra implicitly states that the function x→logex is injective. But we are not 
sure that this statement is based upon a deep, conscious knowledge of that function: did 
Sandra extend injectivity from a (linear) function, like x→kx (k ≠ 0), to the function x→
logex?] 

 

Teacher: «So loge(a+b) is not logea+logeb. Do you agree?». 
Sandra (calm): «Yes, of course. But it seems correct, doesn’t it?»  
 

[Then Sandra wrote the correct solution of the equation: 
 

 loge(x2+7) = loge7  ⇒  x2+7 = 7  ⇒  x2 = 0  ⇒  x = 0] 
 

Teacher: «The solution is correct. Now let us see: 94 +a . Why did you write 

94 +a  = a2+3?» 

Sandra: «I thought: 4a  = a2 and 9  = 3». 
Teacher: «Do you think your process is correct?» 

Sandra: «Well, 4a  is really a2 and 9  is 3». 

Teacher: «Of course: but is it correct to say that 94 +a  = a2+3?» 
Sandra (smiling): «I guess the answer is no, isn’t it? But how c an I simplify 

94 +a ?» 

Teacher: «There are no properties to simplify 94 +a » 

Sandra: «No properties about loge(a+b), no properties about 94 +a . But it was 

possible to solve the equation: and now, how can I simplify 94 +a ?» 
Teacher: «You cannot simplify it». 

Sandra: «So when I find 94 +a  I must stop». 

Teacher: «Of course: you cannot continue: 94 +a  is the final result of your 
exercise». 

Sandra (worried): «Agreed». 
 

Sandra does not seem quite persuaded: she explicitly noticed that the equation 
loge(x2+7) = loge7 can be solved without writing loge(x2+7) = logex2+loge7; so, in this 

case, there is a correct route to be taken, instead of the wrong route. The case 94 +a  



seems a different one; Sandra asked twice: «how can I simplify 94 +a ?» It is 

impossible to «continue» this exercise without writing 94 +a  = a2+3... 
It is very interesting to consider the final part of the interview: 
 

Teacher: «For example, do you think that ea+b = ea+eb?» 
Sandra (lit up with joy!): «Oh no, no! I know very well that ea+b = ea· eb!» 
 

So Sandra will not fall in mistakes like ea±b = ea±eb: in these cases she knows some 
simple rules to simplify ea±b (ea+b = ea· eb and ea–b = ea/eb), so she is not forced to 
extend (improperly) other rules. 

However, let us underline that this situation is not referred to an exercise (so it is not 
influenced by the didactic contract): the last answer can be influenced by the 
experimental contract (see for instance: Schubauer Leoni, 1988; Schubauer Leoni & 
Ntamakiliro, 1994). 

 
3.2. Alberto and equations 

 

Let us consider the case of Alberto, an High School student of average mathematical 
skill, aged 16 years (3rd class of Liceo scientifico, in Treviso, Italy); he wrote in a 
protocol the following solution (being x∈R): 

 

 5x2 = 20  ⇒  x2 = 4  ⇒  x = 2 
 

Of course, the teacher underlined that this solution is wrong because it “forgets” the 
root x = –2. He showed the following (correct) solution: 

 

 5x2 = 20  ⇒  x2 = 4  ⇒  x2–4 = 0  ⇒  (x+2)(x–2) = 0  ⇒  x = –2 ∨ x = 2 
 

Alberto’s interview took place in the classroom, in other pupils’ presence:  
 

Teacher: «What about this solution?» 
Alberto: «Of course it is correct, but it is rather strange, difficult for me. I did not 

think that the rule a2–b2 = (a+b)(a–b) is necessary to solve an equation». 
Teacher: «It is not absolutely necessary: it is enough to remember that 22 = (–2)2 = 4. 

Please, describe entirely your solution». 
Alberto: «First of all, I divided both members by 5; then I calculated the square roots 

of both members: this is easy. And it is very easy to be kept in mind...» 
 

So Alberto states that he chose the simplest route, the solution «easy to be kept in 
mind»; he «did» the same «operations» in both members of the equation, hoping to obtain 
a new equation equivalent to the original one: the mistake seems clear, now. 

Well, is everything clear, after the mentioned interview? 
In another protocol, just a month later, Alberto wrote: 
 

 y2–x2 = 2x+1   ⇒    y2 = x2+2x+1   ⇒   22 )1( += xy    ⇒   y = x+1 
 

So we can point out that the balance misconception is very strong, lasting: even the 
teacher’s correction was not effective enough to overcome it, in Alberto’s mind.  

 



3.3. Another example 
 

We underline once again that the mistakes previously considered can be found in several 
school levels: so they are not made only by beginners. Let us briefly see the case of 
Matteo, an High School student aged 18 years (5th class of Liceo scientifico, in Treviso, 
Italy): in a protocol, he wrote down the following correct process: 
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But in the same protocol, just few rows later, Matteo... extended it to the following 
wrong process: 
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(where... only the final result is correct!) that can be represented as: 
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Can we consider it only a “casual” mistake?  
In our opinion, in this situation we can underline the clear influence of the (correct) 

habit to simplify some fractions in order to calculate a limit; the student tried to extend 
(incorrectly) this process, so we can point out the presence of a misconception similar to 
the balance misconception (applied to fractions). 

We shall not examine closely Matteo’s mistake: we wanted just underline that some 
mistakes that can be connected to the balance misconception are present in students aged 
18-19 years (5th class of Italian Liceo scientifico; as regards the learning of the notion of 
limit, and in particular some important misconceptions, see for example: Cornu, 1980; 
Davis & Vinner, 1986; Dimarakis & Gagatsis, 1996). 

 
4. EDUCATIONAL ROOTS OF ALGEBRAIC THOUGHT: 
FROM ARITHMETICS TO ALGEBRA 

 

We pointed out that students sometimes improperly extend «simple» rules. Sandra 
(paragraph 3.1) seemed to look for any rule to simplify some expressions, so she 
considered the functions x→logex and x→x2 as linear mappings; but let us remember the 
final part of her interview, too: it seems that mistakes like ea±b = ea±eb are not very 
frequent, because in these cases students know some rules to simplify ea±b (ea+b = ea· eb 



and ea–b = ea/eb): so they are not forced to extend improperly other rules (we shall deal 
with this situation in the following paragraph). 

Nevertheless, the situation is not simple: for example, we cannot forget the mistake 
(that can be noticed in pupils, aged 18-19 years, that are studying Calculus) by which the 
derivative of the product f(x)· g(x) would be the product of the derivatives of the 
respective factors, f’(x)· g’(x): it seems connected with the (correct) rule by which the 
derivative of the sum f(x)+g(x) is the sum of the derivatives of the respective addends, 
f’(x)+g’(x). So sometimes students improperly extend a simple and well-known rule also 
when there is a rule by which it is possible to solve the problem in question (the 
derivative of a product of functions). 

From a technical point of view, we should say that the examined mistakes are based 
upon algebraic weakness (let us consider for example Alberto’s mistake and the balance 
misconception, paragraph 3.2, or Matteo’s mistake, paragraph 3.3; let us quote once 
again: Tietze, 1988; Malle, 1993). It is interesting to examine briefly some educational 
roots of algebraic thought. 

F. Arzarello, L. Bazzini and G. Chiappini notice: «Several Authors state that the roots 
of algebraic thought can be pointed out in the effort to consider a computational process 
in a quite general way» (Arzarello, Bazzini & Chiappini, 1994, p. 10). So Algebra itself 
is often introduced as a generalisation: for example, we generalise arithmetical operations 
by some algebraic process; and this «replacement» of Arithmetics by Algebra is 
sometimes a source of obstacles. Y. Chevallard writes: «For several generations, 
Arithmetics was the green Paradise of [...] the spirit opening to an marvellous intellectual 
activity [...] So an only too well learnt Arithmetics became an intellectual, affective and 
ideological obstacle against its overcoming» (Chevallard, 1989, p. 15; see moreover: 
Vergnaud, Cortes & Favre-Ortigue, 1997, p. 253). 

Moreover, let us underline that the role of formal transformations is important. L. 
Bazzini notices: «Students’ answers to questions about equivalence  of equations (or 
inequalities) are highly influenced by presence or absence of formal transformations. 
This [...] entails a careful reflection about cognitive processes in learning of Algebra» 
(Bazzini, 1995, p. 44; see moreover: Linchevski & Sfard, 1991; Sfard & Linchevski, 
1992; Arcavi, 1994; Cortés, 1994). 

It is important that the students (and the High School students, too) are enabled to 
interpret algebraic symbols and processes not only from a syntactic point of view 
(Burton, 1988; Tall, 1990). 

So we can resume: 
 

•    in the examined students’ mistakes, we can point out obstacles related to algebraic 
weakness: so some pupils do not aware several basic algebraic techniques; 

 

•    moreover, we must underline the presence of obstacles related to affective sphere: 
students know a “simple” rule, they use successfully in many cases, so associate those 
rules to good performances; when they have no rules to use in some resolutions, they 
improperly extend those rules, hoping to have, once again, good performances. 

 

Then we wanted to examine the fundamental affective roots of the obstacles that may 
cause some of the mistakes previously examined (according to: Chevallard, 1989). 



By the following tests we wanted to point out that affective aspect is fundamental to 
settle this situation. 

 
5. AN EXPERIMENTAL RESEARCH 

 

5.1. Method of tests 
 

Two tests were proposed to students belonging to two 4th classes and two 5th classes of a 
Liceo scientifico (High School; pupils aged 17-19 years) in Treviso, Italy, total 95 
students (two 4th classes: 23 and 24 pupils respectively; two 5th classes: 26 and 22 pupils 
respectively); we shall identify them by group A (the first 4th and 5th classes, total 49 
pupils) and group B (the second 4th and 5th classes, total 46 pupils; all students had the 
same mathematics teacher; their curricula were standard: they knew basic elements of 
trigonometry; in particular, they knew the fundamental equality: sin2x+cos2x = 1). 

The first test (A) was proposed to the 49 pupils of the group A (4th class: 23 pupils; 
5th class: 26 pupils): 

 

A) You know that sin2x+cos2x = 1 is true for every x. Is the equality: 
 

 sin4x+cos4x = 1 
 

 true for every x? 
 

Time: 1 minute (we wanted that students examine the problem “at a glance”). No 
textbooks or electronic calculators allowed. 

The second test (B) was proposed to the 46 pupils of the group B (4th class: 24 
pupils; 5th class: 22 pupils): 

 

B) Let a2+b2 = 1. Is the equality: 
 

 a4+b4 = 1 
 

 true for every a and for every b such that a2+b2 = 1? 
 

Time: 1 minute. No textbooks or electronic calculators allowed. 
By these tests we wanted to examine the influence of the well-known trigonometric 

rule sin2x+cos2x = 1 in the interpretation of the (incorrect) equality sin4x+cos4x = 1 (test 
A). The test B is based upon the incorrect statement a2+b2 = 1 ⇒ a4+b4 = 1, that can be 
considered technically equivalent to the problem expressed in the test A, but it has no 
reference with the basic rule sin2x+cos2x = 1. 

 
5.2. Results of the tests 

 

Group A 
 4th class 

(23 students) 
5 th class 

(26 students) 
Total 

(49 students) 
Yes (true)   9 39% 12 46% 21 43% 
No (false) 10 44%   8 31% 18 37% 
No answer   4 17%   6 23% 10 20% 

 
 



Group B 
 4th class 

(24 students) 
5 th class 

(22 students) 
Total 

(46 students) 
Yes (true)   4 17%   2   9%   6 13% 
No (false) 19 79% 16 73% 35 76% 
No answer   1   4%   4 18%   5 11% 

 
5.3. Considerations about results 

 

These results show a clear difference: as regards the group A, 43% of the students stated 
that sin4x+cos4x = 1; probably, they were influenced by the (correct) rule sin2x+cos2x = 
1. As regards the group B, in fact, only 13% of the students stated that a2+b2 = 1 ⇒ 
a4+b4 = 1. 

Let us remember that several students (19 out of 35 students that answered no or false 
to the question of the test B) noticed that a2+b2 = 1 ⇒ a4+b4 = 1 can be true only for 
some particular values of a and b (a = ±1 and b = 0, or a = 0 and b = ±1). 

 
5.4. Justifications given by students 

 

Several students gave interesting justifications; as regards the students that answered yes 
or true to the question of the test A, let us remember the following justification: 

 

«I saw sin4x+cos4x = 1 and I immediately thought that sin4x = (sin2x)2 and cos4x = 
(sin2x)2, so I concluded that sin4x+cos4x = 1 is true» (Aldo, 4th class); 9 justifications 
(test A) and 4 justification (test B) are similar to this one. 

 

In Aldo’s justi fication we can clearly point out the presence of the misconception of 
linear mappings. 

 

«Of course, I realise I’ve made a big mistake, I do not know the reason: I 
remembered the famous trigonometric rule sin2x+cos2x = 1 and I thought that it could be 
true for 4, too. But why? I did not remember any other rules about sin4x+cos4x = 1 so I 
tried to apply the one and only rule I could remember» (Anna, 5th class). 

 

Anna’s justification is not very different from Sandra’s one (see paragraph 3.1): she 
had no particular rules for sin4x+cos4x = 1, so she extended a well-known rule... 

As regards students that answered no or false to the question of the test B, let us 
remember: 

 

«The equality is false: a4 and b4 are not equal to a2 and b2: it is true only for some 
particular cases» (Antonio, 5th class). 

 

As previously remembered, 19 out of 35 students that answered no or false to the 
question of the test B underlined that a2+b2 = 1 ⇒ a4+b4 = 1 can be true only for some 
particular values of a and b. 

We can conclude that the presence itself of a “rule” just similar to the “famous” 
formula sin2x+cos2x = 1 induced many students to refer to it: in the test A the well-



known rule is explicitly present; on the contrary, in the test B the (incorrect) statement 
a2+b2 = 1 ⇒ a4+b4 = 1 is not referred to any “famous” rule.  

 
6. CONCLUSIONS 

 

6.1. Affective roots of some misconceptions 
 

Results of the experimental research previously presented needs some remarks. 
First of all, let us remember that several researches showed that the different 

representations of a problem are very important as regards students’ behaviour in 
problem solving (see: Fischbein, Tirosh & Hess, 1979; Silver, 1986; Arcavi, Tirosh & 
Nachmias, 1989; see moreover: Gagatsis & Thomaidis, 1995). 

The situations previously described show that a “simple” rule is often seen as a 
natural and a reassuring one. So, from an affective point of view, too, some students are 
induced to apply it to a lot of cases, without particular controls: of course, this can cause 
dangerous mistakes. 

Many students try to extend a well-known rule when they do not know specific rules 
to solve a problem. Let us remember, for example, that it is well known that pupils are 
afraid of problems “without a re sult” (about “impossible” problems, see: Baruk, 1985; 
Micol, 1991; Schubauer Leoni & Ntamakiliro, 1994; a systematic classification of 
“impossible” problems can be found in: D’Amore & Sandri, 1993). So we can state that 
this fear brings many students to solve the considered problem by a familiar, reliable 
rule: unfortunately sometimes this rule cannot be applied to the considered case. (Let us 
notice that in a recent work, B. D’Amore and P. Sandri studied some situations related to 
problems with a missing datum, with reference to pupils aged 8-9 years and 12-13 years: 
they noticed that many pupils “imagine” the missing datum in order to be able to solve 
the problem: D’Amore & Sandri, 1998; they refer to Brousseau, 1986; we could say that 
an almost similar behaviour can be pointed out in High School students, too: when they 
feel they cannot solve completely a problem, for example because there are no rules to 
simplify a formula, they try to apply a well-known rule in order to solve completely the 
problem in question: this can be sometimes reassuring, but it is wrong). 

 
6.2. How can we overcome these misconceptions? 

 

As we shall see, it is not easy to overcome these misconceptions. We should say that the 
role of counterexamples is important to make students aware of incorrect answers and of 
their conflicting ideas. 

For example, as regards the mistake sin4x+cos4x = 1 (for every x∈R, paragraph 4.1, 

test A), it is easy to show directly that if we consider the case 
4
π=x , we have: 
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Moreover, if we consider the misconception of linear mappings, we can remember 
the Theorem of Pythagoras (a, b, c are measures of three sides of a triangle having a right 
angle, and a is hypotenuse’s measure), by which we can wri te: 

 

 a = 22 cb +  
 

Of course, if we write: 
 

 a = 22 cb +  = 22 cb +  = b+c 
 

we should state that the sum of two sides of a triangle is equal to the third one, and this is 
clearly an absurd statement. 

As regards the role of counterexamples, visualisation can be very important. Let us 
remember that some Authors, in the last years, worked about matters connected to 
visualisation. R. Duval notices that «mathematical objects are not directly accessible to 
the perception [...] as objects generally said ‘real’ or ‘physical’»; so he states that 
«different semiotic representations of a mathematical object are absolutely necessary» 
(Duval, 1993, p. 37). The important presence of different registers of representation is, in 
Duval’s opinion, quite remarkable: «The cognitive functioning of human thought is 
inseparable from the existence of a variety of semiotic registers of representation. If we 
call sémiosis the learning of the production of a semiotic representation and noésis the 
conceptual learning of an object, we must affirm that sémiosis is inseparable from 
noésis» (Duval, 1993, pp. 39-40). A well-known work by E. Fischbein is devoted to 
visual representation of mathematical objects and to its great importance in mathematics 
education; Fischbein states that «the integration of conceptual and figural properties in 
unitary mental structures, with the predominance of the conceptual constraints over the 
figural ones, is not a natural process. It should constitute a continuous, systematic and 
main preoccupation of the teacher» (Fischbein, 1993, p. 156; as regards functions, see 
moreover: Vinner, 1983, 1987 and 1992). 
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The following example is referred to the 4th Proposition of Euclidean Geometric 

Algebra (that is: «If a segment is divided, the area of the square of the whole segment is 
equal to the sum of the areas of the squares of the two parts and of the double of the area 



of the rectangle contained between such parts»: Euclid, 1970, p. 163 (as regards 
Euclidean Geometric Algebra from historical point of view, see for example: Boyer, 
1968; Kline, 1972; van der Waerden, 1983; Anglin, 1994). 

Nowadays the 4th Proposition of Euclidean Geometric Algebra can be expressed by: 
 

 (a+b)2 = a2+b2+2ab 
 

but in Elements only the previous picture gives the proof of this proposition. 
It is clear that the mistake that identifies improperly (a+b)2 in a2+b2 (without the so-

called “double product”, according to the misconception of linear mappings) is nearly 
impossible if the visual representation is correctly considered (see for example: 
Kaldrimidou, 1987; Bagni, 1997). 

Nevertheless, we cannot say that the use of counterexamples is always conclusive: the 
effect of counterexamples with students is often weak since they are not able to interpret 
given counterexamples in an adequate way. 

As regards this important point, let us remember once again Alberto’s case; the pupil 
wrote: x2 = 4  ⇒  x = 2. In order to corerct this mistake, the teacher underlined that: 22 = 
(–2)2 = 4; but clearly this correction was not effective enough to overcome completely 
the balance misconception, in Alberto’s mind. In fact the pupil simply said: «I calculated 
the square roots of both members». So Alberto understood teacher’s statement, but  he 
was not able to interpret teacher’s correction in the sense of a real counterexample, 
strictly related to his previous mistake: he was not able to connect directly and effectively 
22 = (–2)2 = 4 (square powers) to the correct solution, x2 = 4  ⇒  x = –2 ∨ x = 2 (square 
roots). 

Then it seems that some misconceptions are really lasting: although they can be 
sources of inconsistencies in student’s minds, they reoccur and their effects can be 
pointed out several times (as regards the presence of conflicting answers and of ideas that 
are incompatible with each other, see for example: Tall, 1990; Tsamir & Tirosh, 1992; 
let us remember that several researches showed that sometimes students do not realise the 
presence of conflicting answers: Stavy & Berkovitz, 1980; Hart, 1981: for example, the 
persistence of different sorts of algebra errors in pupils aged 11-18 years is clearly 
proved: Matz, 1982; and sometimes the presence of ideas that are incompatible with each 
other is not considered completely illicit, forbidden: Schoenfeld, 1985; Tirosh, 1990). 

 
6.3. General conclusions 

 

We do not think that the obstacles previously examined can be considered as 
epistemological ones or (only) as educational ones (see for example the fundamental 
classification in: Brousseau, 1983; Vergnaud, 1989, pp. 168-169). If we consider them as 
educational obstacles, we must underline that the influence of affective aspect is surely 
remarkable. Then, in our opinion, they can be regarded as affective obstacles, too: so it is 
difficult to overcome them completely just by educational means, like for example 
showing of counterexamples (D’Amore & Martini, 1997).  

Of course, we must underline that analogical reasoning should not be too quickly 
dismissed: in fact, many mathematicians used and use it as one of the main ways for 
creating new mathematics! However, the really different propensity for self-correction 



should be considered, when we compare research mathematicians and young students: 
for example, frequently mathematicians employ analogical reasoning in formulation of a 
conjecture, whose logical soundness must be deeply verified; on the other hand, 
generally students do not perform this meta-discursive monitoring. 

We underlined that the misconception of linear mappings and the balance 
misconception are operational misconceptions, caused by an improper over-use of 
metaphorical projections, too: this suggests some remarks. 

It is clear that «in order to speak about mathematical objects, we must be able to deal 
with products of some processes without bothering about the processes themselves [...] It 
seems, therefore, that the structural approach should be regarded as the more advanced 
stage of concept development. In other words, we have good reasons to expect that in the 
process of concept formation, operational conceptions would precede the structural» 
(Sfard, 1991, p. 10). If we accept, according to A. Sfard, that concept formation takes 
place by «a hierarchy, which implies that one stage cannot be reached before all the 
former steps are taken», we must conclude that the full development of these phases (A. 
Sfard calls the stages in concept development «interiorization, condensation and 
reification respectively»: Sfard, 1991, p. 18) is not a natural process, but it must be 
carefully controlled by the teacher. 
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